STORMWATER REPORT

FOR
Single-Family Attached Development
61 Progressive Street
Worcester, Massachusetts

April 30, 2024

Prepared By:
Level Design Group, L.L.C.
249 South Street, Unit 1
Plainville, MA 02762

Prepared For:
Goldstar Builders, Inc.
6 Jacques Street
Worcester, MA 01603

LDG Project No.:
 2109.00

TABLE OF CONTENTS

1. Hydrologic Summary
2. MADEP Stormwater Checklist
3. USGS Map
4. On-Site Soils Documentation
5. FEMA FIRMette Map
6. 72-hr Drawdown Hydrographs
7. Illicit Discharge Statement
8. Operation and Maintenance Plan
9. Long Term Pollution Prevention Plan
10. Construction Period Pollution Prevention and Erosion \& Sediment Control Plan
11. HydroCAD Analysis, Existing Conditions - 2, 10, 25, 100-Year Storms
12. HydroCAD Analysis, Proposed Conditions - 2, 10, 25, 100-Year Storms

HYDROLOGIC SUMMARY

METHODOLOGY

The HydroCAD computer program (HydroCAD) was used to model the existing and proposed hydrology of the site and design a stormwater management system. HydroCAD generates flood hydrographs dependent upon the type of land use, vegetation, soil types, land slope, watershed areas and rainfall data. HydroCAD also takes into account the antecedent moisture condition of the soil. The peak rate of runoff and volume of runoff are projected for the input storm frequency events (design storms).

Rainfall data was obtained from the precipitation data for Worcester for storm frequencies of 2-, 10-, 25- and 100-year storm return from Extreme Precipitation Tables Northeast Regional Climate Center; these were then input into HydroCAD. Rainfall data is attached herein. A 24-hour type III rainfall distribution was used in the HydroCAD analysis as prescribed for New England by the USDA Soil Conservation Service (SCS).

EXISTING CONDITIONS

The existing site is located at MBL34-12-30 located at 61 Progressive Street, Worcester, MA. The site contains approximately $10,000 \pm$ sf. and is located within a RL-7 Residential Zoning District.

The existing site currently has a single family dwelling and two sheds, with less than 5% grades on site. The site has no structured stormwater management system with all stormwater runoff from the site draining to Progressive Street and flowing into an existing catch basin located to the North of the site in the Progressive Street right-of-way. The site is not within a FEMA Flood Zone and there are no on-site bordering vegetated wetlands.

The on-site soils as classified by the Soil Survey for Worcester County Massachusetts, Northeastern Part are documented as Paxton fine sandy loam (305B) and Udorthents, smoothed (651). A Hydrologic Soil Group C rating was utilized for the pre-and post- and post-development hydrologic analysis. The Soil Survey Map is attached herein.

POST-DEVELOPMENT CONDITIONS

The Applicant proposes to develop the site and construct a three (3) unit single-family attached dwelling. Development activities will include clearing and grubbing of the entire site, construction of the proposed 3-unit structure and associated driveways, and installation of on-site utilities with water and sewer to be connected to existing City mains.

Civil Engineers \& Land Surveyors
A new fully compliant stormwater management system has been designed to mitigate the impacts of the proposed site development. Runoff from the building rooftops will be directed to on-site BMPs which will include a subsurface Stormtech 740 Infiltration Chambers dedicated for roof top runoff. The Stormtech system is designed with an overflow which discharges to the surface.

Compliance with the 10 MADEP Stormwater Standards for the proposed development is detailed below.

STANDARD 1: Untreated Discharges

Stormwater Management Standard 1 requires that, "No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth".

This standard is met by the proposed development not creating any new non-treated stormwater discharges and improving an existing site with no existing stormwater management system. All surface runoff from the proposed impervious surfaces is collected by the proposed stormwater management practices, treated for suspended solids removal, infiltrated for groundwater recharge and detained for peak flow mitigation prior to discharge to designated areas that mimic existing drainage flow patterns. The development of the site is a significant improvement to the existing conditions which have stormwater runoff from grass and impervious surfaces running into the Progressive Street right-of-way untreated with no controls.

STANDARD 2: Peak Rate Control and Flood Prevention

Stormwater Management Standard 2 requires that "Stormwater management systems must be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for land subject to coastal storm flowage."

This standard is met by the proposed development mitigating the post-development peak discharge rates at the designated control point for all design storm events. This is accomplished by directing rooftop runoff to a Stormtech Infiltration System. Below is a description of the control point used in the hydrologic analysis and a summary of pre- and post-development discharge rates. The development of the site is an improvement to the existing conditions which contains no peak runoff controls. The proposed development will reduce the peak rate of runoff at all the design control points. The site will also provide ample groundwater recharge.

SUMMARY OF PEAK STORMWATER RUNOFF (CFS)

Control Point DP-1 is the property line abutting the Progressive Street right-of-way.

Control Point - DP-1		
Storm	Pre-Dev. Flow	Post-Dev. Flow
$2-\mathrm{yr}$	0.48 cfs	0.23 cfs
$10-\mathrm{yr}$	0.98 cfs	0.49 cfs
$25-\mathrm{yr}$	1.39 cfs	0.70 cfs
$100-\mathrm{yr}$	2.08 cfs	1.14 cfs

The net peak discharge and volume are controlled and does not increase at the control points for any of the evaluated design storms.

STANDARD 3: Recharge to Groundwater

Stormwater Management Standard 3 requires that "Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures, including environmentally sensitive site design, low impact development techniques, best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from the pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook."

This standard is fulfilled by directing all rooftop runoff to a sub-surface infiltration system. The system is designed to infiltrate all storm events, besides the $100-\mathrm{yr}$ storm event. In the case of a high-intensity storm event, the system is fitted with a surface overflow which convey the excess stormwater to the designated discharge point. The development of the site is a significant improvement to the existing conditions which contains no treated stormwater infiltration. The proposed development captures stormwater from the roofs and directs it to a constructed stormwater infiltration BMP with the required pre-treatment in excess of 44%. Below is a detailed calculation demonstrating full compliance with the recharge to groundwater requirements.

GROUNDWATER RECHARGE

The total post-development impervious area including the proposed building rooftop totals $3,213 \pm$ s.f. The required recharge volume is calculated as follows.

Required Recharge Volume for the Development $=(3,213 \pm$ s.f of impervious area) \times (0.25 in of runoff for hydrologic soil group C) x (1 ft. $/ 12 \mathrm{in}$. $)=67 \pm \mathrm{cu} . \mathrm{ft}$.

For the site-specific soils, a permeability rate of 2.41 inches per hour was used, based on the Rawls Rate. The HydroCAD analysis provides the following results:

YEAR	RECHARGE TO
STORM	GROUNDWATER
	(Cu. Ft.)
2	566
10	871
25	1,133
100	1,612

The recharge volume requirement of $67 \pm \mathrm{cu}$. ft. is far exceeded for each evaluated design storm. See the provided proposed HydroCAD calculations for each design storm event attached herein.

STANDARD 4: 80\% TSS Removal

Stormwater Management Standard 4 requires that "Stormwater management systems must be designed to remove 80% of the average annual post-construction of Total Suspended Solids (TSS). This standard is met when:
a. Suitable practices for source control and pollution prevention are identified in a longterm pollution prevention plan and thereafter are implemented and maintained;
b. Stormwater BMPs are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook and;
c. Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook"

This proposed 3-unit single-family attached development includes only the creation of three small residential driveways which will drain towards Progressive Street. The MADEP Stormwater Handbook Standards do not apply to small residential structures containing four or fewer units. Despite the development not being subject to the Stormwater Standards the design includes one subsurface infiltration system which will collect, treat, and fully infiltrate the runoff from the rooftop and will provide for 90% TSS Removal.

STANDARD 5: Higher Potential Pollutant Loads

Stormwater Management Standard 5 requires that "For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention, all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt and stormwater runoff, the proponent shall use the specific stormwater BMPs determined by the Department to be suitable for such use as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean

Waters Act, M.G.L. c. 2,§26-53, and the regulations promulgated thereunder at 314 CMF 3.00, 314 CMR 4.00 and 314 CMR 5.00."

The proposed development is not classified as a use creating a Higher Potential Pollutant Load.

STANDARD 6: Critical Areas

Stormwater Management Standard 6 requires that Stormwater discharge to a Zone II Interim Wellhead Protection Area of a public water supply and stormwater discharges near any other critical area require the use of specific source control and pollution prevention measures and the specific stormwater best management practices determined by the Department to be suitable for managing discharges to such area, as provided in the Massachusetts Stormwater Handbook. A discharge near a critical area, if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters or Special Resource Waters shall be set back from the receiving water and receive the highest and best practical method of treatment. A "stormwater discharge," as defined in 314 CMR 3.04(2)(a)1. or (b), to an Outstanding Resource Waters or Special Resource Waters shall comply with 314 CMF 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A area are prohibited unless essential to the operation of the public water supply."

The proposed development site is not located within a Critical Area as defined in the Massachusetts Stormwater Handbook.

STANDARD 7: Redevelopment and Other Projects Subject to the Standards only to the Maximum Extent Practicable

The definition of a Redevelopment Project under the definition provided in the MADEP Stormwater Handbook for Standard 7 is listed below:
"Development rehabilitation, expansion and phased projected on previously developed sites, provided that redevelopment results in no net increase in impervious area."

The proposed development is a redevelopment site as classified by the Standard 7 Requirements.

STANDARD 8: Erosion and Sediment Control

Stormwater Management Standard 8 requires that "A plan to control construction-related impacts, including erosion sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan), must be developed and implemented."

This standard is met by including erosion and sediment controls within the design plans. A gravel construction entrance is proposed at the access point to the site once the pavement is removed from that area of the site. 9 " Silt Soxx is proposed at the limits of all site-related construction activities.

A Construction Period Pollution and Erosion \& Sedimentation Control Plan has also been prepared for and is included as part of the Stormwater Report.

STANDARD 9: Operation and Maintenance

Stormwater Management Standard 9 requires that, "A long-term operation and maintenance plan must be developed and implemented to ensure that stormwater management systems function as designed".

This standard is fully met with the development and implementation of an Operation and Maintenance Plan included in Stormwater Management Report.

STANDARD 10: Illicit Discharges

Stormwater Management Standard 10 requires that, "All illicit discharges to the stormwater management system are prohibited".

This standard is fully met with the development and implementation of a Long Term Pollution Prevention Plan. This plan will outline all potential pollution sources and the appropriate measures to be taken should a spill or discharge occur. An Illicit Discharge statement has been prepared and is included herein.

MINIMUM STANDARD 11: STORMWATER MANAGEMENT SYSTEM OPERATION AND MAINTENANCE

See the O\&M for this development prepared by Level Design Group.

CONCLUSION

The proposed development meets or exceeds the current MADEP Stormwater Management Standards and Guidelines and provides a stormwater management system that will maintain water quality while attenuating peak rates of runoff at the control points. This was achieved by directing the stormwater runoff to a sub-surface infiltration system which attenuate peak flows while maximizing groundwater recharge and providing a high level of TSS removal. An Operation and Maintenance Plan for post-construction maintenance of the Stormwater Management System has been developed and is included with this report. Additionally, an Erosion and Sediment Control Plan has been incorporated into the design plan sheet along with the site plans addressing all required design elements to ensure that the proposed development will not adversely affect the surrounding area.

MADEP Stormwater Checklist

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?New development
இ RedevelopmentMix of New Development and Redevelopment

Checklist for Stormwater Report

Checklist（continued）

LID Measures：Stormwater Standards require LID measures to be considered．Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project：

【 No disturbance to any Wetland Resource Areas
【 Site Design Practices（e．g．clustered development，reduced frontage setbacks）
Reduced Impervious Area（Redevelopment Only）
\square Minimizing disturbance to existing trees and shrubs
\square LID Site Design Credit Requested：
Credit 1
Credit 2
Credit 3Use of＂country drainage＂versus curb and gutter conveyance and pipe
Bioretention Cells（includes Rain Gardens）
\square Constructed Stormwater Wetlands（includes Gravel Wetlands designs）Treebox FilterWater Quality SwaleGrass ChannelGreen Roof
\square Other（describe）：

Standard 1：No New Untreated Discharges

【 No new untreated discharges
\boxtimes Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth

【 Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included．

Checklist for Stormwater Report

Checklist（continued）

Standard 2：Peak Rate Attenuation

Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding．
\boxtimes Evaluation provided to determine whether off－site flooding increases during the 100－year 24－hour storm．
\boxtimes Calculations provided to show that post－development peak discharge rates do not exceed pre－ development rates for the 2－year and 10－year 24－hour storms．If evaluation shows that off－site flooding increases during the 100－year 24－hour storm，calculations are also provided to show that post－development peak discharge rates do not exceed pre－development rates for the 100－year 24－ hour storm．

Standard 3：Recharge

Soil Analysis provided．
区 Required Recharge Volume calculation provided．
\square Required Recharge volume reduced through use of the LID site Design Credits．
\square Sizing the infiltration，BMPs is based on the following method：Check the method used．
\square Static
\square Simple Dynamic
\square Dynamic Field ${ }^{1}$

Runoff from all impervious areas at the site discharging to the infiltration BMP．
Runoff from all impervious areas at the site is not discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume．

区 Recharge BMPs have been sized to infiltrate the Required Recharge Volume．
Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum extent practicable for the following reason：
\square Site is comprised solely of C and D soils and／or bedrock at the land surface
\square M．G．L．c．21E sites pursuant to 310 CMR 40.0000
\square Solid Waste Landfill pursuant to 310 CMR 19.000
\square Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable．

区 Calculations showing that the infiltration BMPs will drain in 72 hours are provided．

Property includes a M．G．L．c．21E site or a solid waste landfill and a mounding analysis is included．

[^0]
Checklist for Stormwater Report

Checklist (continued)

Standard 3: Recharge (continued)

\boxtimes The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24 -hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
\boxtimes Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.

区 A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
\square Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
\square is within the Zone II or Interim Wellhead Protection Area
\square is near or to other critical areas
\square is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
\square involves runoff from land uses with higher potential pollutant loads.
The Required Water Quality Volume is reduced through use of the LID site Design Credits.
\square Calculations documenting that the treatment train meets the 80\% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist for Stormwater Report

Checklist (continued)

Standard 4: Water Quality (continued)

\boxtimes The BMP is sized (and calculations provided) based on:
【 The $1 / 2^{\prime \prime}$ or 1 " Water Quality Volume or
\square The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.

The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
\square A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

\square The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
\square The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.The NPDES Multi-Sector General Permit does not cover the land use.
\square LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
\square All exposure has been eliminated.
\square All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.
The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
\square Critical areas and BMPs are identified in the Stormwater Report.

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project

\square Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
\square Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
\square Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff

Bike Path and/or Foot Path

Redevelopment Project
\square Redevelopment portion of mix of new and redevelopment.
Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
\square The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

X A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist for Stormwater Report

Checklist（continued）

Standard 8：Construction Period Pollution Prevention and Erosion and Sedimentation Control （continued）

The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application．A Construction Period Pollution Prevention and Erosion and Sedimentation Control has not been included in the Stormwater Report but will be submitted before land disturbance begins．

The project is not covered by a NPDES Construction General Permit．
\square The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report．
\square The project is covered by a NPDES Construction General Permit but no SWPPP been submitted． The SWPPP will be submitted BEFORE land disturbance begins．

Standard 9：Operation and Maintenance Plan

\boxtimes The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information：

】 Name of the stormwater management system owners；
Party responsible for operation and maintenance；
区 Schedule for implementation of routine and non－routine maintenance tasks；
【 Plan showing the location of all stormwater BMPs maintenance access areas；
Description and delineation of public safety features；
区 Estimated operation and maintenance budget；and
Q Operation and Maintenance Log Form．
The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions：
\square A copy of the legal instrument（deed，homeowner＇s association，utility trust or other legal entity） that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs；
\square A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions．

Standard 10：Prohibition of Illicit Discharges

邓 The Long－Term Pollution Prevention Plan includes measures to prevent illicit discharges；
【 An Illicit Discharge Compliance Statement is attached；
NO Illicit Discharge Compliance Statement is attached but will be submitted prior to the discharge of any stormwater to post－construction BMPs．

USGS TOPOGRAPHIC QUAD

On-Site Soils Documentation

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
Percent of AOI			
305B	Paxton fine sandy loam, 3 to 8 percent slopes	2.6	99.7%
651	Udorthents, smoothed	0.0	0.3%
Totals for Area of Interest	$\mathbf{2 . 6}$	$\mathbf{1 0 0 . 0 \%}$	

FEMA FIRM Map

NOTETO UERS

 andem

72-Hour Drawdown Hydrographs

Hydrograph for Pond 102: SC-740

Time (hours)	Inflow (cfs)	Storage (acre-feet)	Elevation (feet)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)
0.00	0.00	0.000	564.92	0.00	0.00	0.00
2.00	0.00	0.000	564.92	0.00	0.00	0.00
4.00	0.00	0.000	564.92	0.00	0.00	0.00
6.00	0.01	0.000	564.92	0.01	0.01	0.00
8.00	0.01	0.000	564.92	0.01	0.01	0.00
10.00	0.02	0.000	564.93	0.02	0.02	0.00
12.00	0.28	0.005	565.84	0.02	0.02	0.00
14.00	0.02	0.015	567.49	0.02	0.02	0.00
16.00	0.01	0.014	567.27	0.02	0.02	0.00
18.00	0.01	0.012	566.86	0.02	0.02	0.00
20.00	0.01	0.009	566.39	0.02	0.02	0.00
22.00	0.00	0.005	565.91	0.02	0.02	0.00
24.00	0.00	0.002	565.43	0.02	0.02	0.00
26.00	0.00	0.000	564.92	0.00	0.00	0.00
28.00	0.00	0.000	564.92	0.00	0.00	0.00
30.00	0.00	0.000	564.92	0.00	0.00	0.00
32.00	0.00	0.000	564.92	0.00	0.00	0.00
34.00	0.00	0.000	564.92	0.00	0.00	0.00
36.00	0.00	0.000	564.92	0.00	0.00	0.00
38.00	0.00	0.000	564.92	0.00	0.00	0.00
40.00	0.00	0.000	564.92	0.00	0.00	0.00
42.00	0.00	0.000	564.92	0.00	0.00	0.00
44.00	0.00	0.000	564.92	0.00	0.00	0.00
46.00	0.00	0.000	564.92	0.00	0.00	0.00
48.00	0.00	0.000	564.92	0.00	0.00	0.00
50.00	0.00	0.000	564.92	0.00	0.00	0.00
52.00	0.00	0.000	564.92	0.00	0.00	0.00
54.00	0.00	0.000	564.92	0.00	0.00	0.00
56.00	0.00	0.000	564.92	0.00	0.00	0.00
58.00	0.00	0.000	564.92	0.00	0.00	0.00
60.00	0.00	0.000	564.92	0.00	0.00	0.00
62.00	0.00	0.000	564.92	0.00	0.00	0.00
64.00	0.00	0.000	564.92	0.00	0.00	0.00
66.00	0.00	0.000	564.92	0.00	0.00	0.00
68.00	0.00	0.000	564.92	0.00	0.00	0.00
70.00	0.00	0.000	564.92	0.00	0.00	0.00
72.00	0.00	0.000	564.92	0.00	0.00	0.00

Illicit Discharge Statement

Illicit Discharge Statement

FOR:
3-Unit Single Family Attached Development
61 Progressive Street, Worcester, MA
DEVELOPED BY:
Gold Star Builders, Inc.
Worcester, Massachusetts

All illicit discharges to the Stormwater Management System are prohibited. The Stormwater Management System is the system for conveying, treating, and infiltrating stormwater. Illicit discharges to Stormwater Management Systems are discharges that are not entirely comprised of stormwater, but do not include discharges from the following activities or facilities:

- Firefighting
- Water Line Flushing
- Potable Water Sources
- Landscape Irrigation
- Potable Water Sources
- Uncontaminated Groundwater
- Air-conditioning Condensation
- Dechlorinated Water from Swimming Pools
- Water used for street washing
- Water used for clean residential buildings without detergents
- Foundation Drains

The site will be operated and maintained in accordance with the Operation and Maintenance Plan dated April 30, 2024 prepared by Level Design Group, LLC.

I, Tony Nguyen (Applicant) do hereby agree to comply with requirements set forth within the Illicit Discharge Statement and will not knowingly discharge illicit materials to the stormwater management system once it is brought online upon completion of construction.

Operation and Maintenance Plan

OPERATION AND MAINTENANCE PLAN

FOR
Single-Family Attached Development
61 Progressive Street
Worcester, Massachusetts

April 30, 2024

Prepared By:
Level Design Group, L.L.C.
249 South Street, Unit 1
Plainville, MA 02762

Prepared For:
Goldstar Builders, Inc.
6 JacQues Street
WORCESTER, MA 01603

LDG Project No.:

2109.00

The proposed Stormwater Management System is designed to function properly provided that routine maintenance is performed. It is the responsibility during construction and until purchase of the units that the Owner and Developer, Gold Star Builders, Inc (or any other future Owner), shall be responsible for the long- term maintenance to provide the required maintenance outlined in this plan for the site infiltration system as well as the remainder of the on-site storm drainage system.

Upon completion of construction, maintenance of driveways, off-site catch basins, and the stormwater appurtenances are required to ensure that sedimentation and pollution is controlled and that storm water infiltration capacity is sustained during the life of the system. The system maintenance will be the responsibility of the Site Owner(s). To ensure the proper functioning of these facilities the following maintenance practices will be used:

DRIVEWAYS \& PARKING AREAS

Driveways and Parking Areas are to be swept monthly to remove sand which has accumulated. Sand shall be removed from the site and legally disposed of. Leaves and debris which accumulates within the Driveways and Parking Areas during the summer and fall months shall be collected and legally disposed of.

Winter Maintenance \& Snow Removal

Snow removal within Driveways and Parking Area shall be stockpiled outside of the traveled driveways. These areas should be located within or adjacent to the parking surface and should drain to the stormwater management system. Under no circumstances shall snow be directed onto abutting parcels or into the rain gardens.

Estimated Yearly Cost $\$ 400.00$ (not including cost for snow plowing)

GUTTERS AND DOWNSPOUTS

Summer \& Fall Maintenance

Leaves and debris which accumulates within the gutters during the summer and fall shall be collected and legally disposed of. Excessive water shall not be introduced to clean the gutters and the downspouts, and materials shall be collected so as not to clog the subsurface basin.

Estimated Yearly Cost $\underline{\$ 100.00}$

Civil Engineers \& Land Surveyors

SUBSURFACE INFILTRATION BASIN

Once the system has gone online, inspections should occur after every storm event accumulating greater than 1 inch of rainfall for the first year to ensure proper stabilization and function. Attention should be paid to how long water remains standing in the chambers after a storm. Thereafter, the system should be inspected at least twice per year. Observations and measurements shall be made from the observation ports provided. Important items to check for include: differential settlement, cracking, erosion or leakage. If the system appears to be clogged or not functioning properly at any time, the system is to be flushed in accordance with the 10 year maintenance procedure listed below. Sediment should be removed from the system as necessary. Removal procedures should not take place until the pipes in the system are thoroughly dry. A vacuum truck is usually the most effective and convenient method. If the sediment has traveled past the reach of the vacuum truck the system shall be thoroughly flushed with water, a fire hose or the like is typically the most effective method of flushing.

The system shall be monitored at several intervals during and after a small and large rainfall event to ensure runoff is detained. Inlet and outlet pipes shall be kept free of obstructions. Any material obstructing the pipes shall be removed and legally disposed of.

Estimated Yearly Cost $\underline{\$ 200.00}$

PUBLIC SAFETY FEATURES

Many of the Public Safety Features of the Stormwater Management System are incorporated into its design. The stormwater management features are located below the surface which provides a greater level of safety over surface basins.

Despite all the well-designed safety features within the Stormwater Management System all components of the system must be properly maintained to be effective. All maintenance procedures detailed above must be done on schedule and documented. Standing, stagnant water provides mosquito-breeding habitat and increases the potential for disease transmission. All stormwater systems and rain gardens are designed to fully infiltrate within 72 hours after a storm even which will prevent standing water from becoming a safety hazard. Routine monitoring for and management of mosquito-breeding conditions by qualified maintenance staff is required during the peak breading season between April and September ensure that unforeseen conditions do not develop.

While risks can be mitigated through proper design and maintenance, it is impossible to entirely eliminate risk. Therefore, public education regarding stormwater management facilities and their inherent risks is valuable and should be a part of every community's activity. Residents of the
units shall be given an overview of the Stormwater System and which areas to avoid. Public participation also increases the level of maintenance as community members can notify staff if a component of the stormwater system is not functioning properly.

Civil Engineers \& Land Surveyors

STORMWATER MANAGEMENT OPREATOIN AND MAINTENANCE LOG

It is the responsibility of the developer to provide for maintenance of the parking areas and the storm drainage system until the site is turned over to the condominium association which will be created prior to the sale of any units. The log form below is a template and shall be reproduced as needed. Copies of all log forms shall be kept on file for a minimum of three years from the date of inspection.

Name of Inspector:
Date and Time of Inspection:
Weather Conditions:

Stormwater BMP	Observations	Action Required

3-Unit Attached Single Family Development

 61 Progressive Street, Worcester, MAOPERATION, INSPECTION AND MAINTENANCE REPORT FORM
TO BE COMPLETED AS REQUIRED IN THE OPERATION AND MAINTENANCE REPORT

INSPECTOR: \qquad DATE: \qquad

INSPECTOR'S QUALIFICATIONS:
\qquad
\qquad

CONDITION OF TEMPORARY HAYBALES AND SILT FENCE CONTROL MEASURES IN PLACE: \qquad
\qquad
\qquad

DAYS SINCE LAST RAINFALL: \qquad AMOUNT OF LAST RAINFALL: \qquad INCHES

SITE STORMWATER MEASURES						
AREA OF THE SITE	DATE SINCE LAST	DATE OF NEXT	STABILIZED? (YES/NO)	INSPECTED	CONDITION	

ADDITIONAL REPAIRS OR MAINTENANCE REQUIRED/RECCOMENDED:
\qquad
\qquad
\qquad
\qquad ON OR BEFORE: \qquad

3-Unit Attached Single Family Development 61 Progressive Street, Worcester, MA
INSPECTION AND MAINTENANCE REPORT FORM TEMPORARY AND PERMANENT STRUCTURAL CONTROLS

DATE:

DIVERSION SWALES AND SEDIMENT BASIN / TRAPS

SOIL STABILIZATION MEASURES						
FROM	TO	BASIN/TRAP AND SWALE LOCATION	STABILL STABILIZED?	CONDITIONS OF OUTLETS	IS THERE EVIDENCE OF WASHOUT OR OVER- TOPPING?	

MAINTENANCE REQUIRED FOR DIVERSION SWALES AND/OR BASINS AND TRAPS:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3-Unit Attached Single Family Development 61 Progressive Street, Worcester, MA INSPECTION AND MAINTENANCE REPORT FORM CHANGES TO THE POLLUTION PREVENTION PLAN

CHANGES REQUIRED TO THE POLLUTION PREVENTION PLAN:
\qquad

REASON FOR CHANGES:
\qquad

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for know violations.
\qquad
\qquad

3-Unit Attached Single Family Development

61 Progressive Street, Worcester, MA
MAJOR GRADING AND SITE ACTIVITIES SITE RECORD FORM

DATES WHEN CONSTRUCTION ACTIVIES TEMPORARILY OR PERMANENTLY CEASE

DATES WHEN STABILATATION MEASURES ARE INITIATED
\qquad

Long Term Pollution Prevention Plan

LONG TERM POLLUTION PREVENTION PLANS

FOR

Single-Family Attached Development
61 Progressive Street
WORCESTER, MASSAChUSETTS

April 30, 2024

Prepared By:
Level Design Group, L.L.C.
249 South Street, Unit 1
Plainville, MA 02762

Prepared For:
Goldstar Builders, Inc.
6 JacQues Street
WORCESTER, MA 01603

LDG Project No.:

2109.00

Good Housekeeping Practices

It is the responsibility of the site operator, Goldstar Builders, Inc., to provide the required maintenance outlined in this plan. The Owner shall utilize good housekeeping practices as outlined in the Operation and Maintenance Plan required for the maintenance of the Stormwater Management System.

Provisions for Storage of Materials and Waste Products Inside or Under Cover

The storage of hazardous materials and waste will not be allowed outdoors. All hazardous materials, such as waste oil, fuel, etc. shall be stored indoors and hauled by Massachusetts licensed haulers of the specified materials.

Vehicle Washing Controls

Outdoor vehicle washing is not allowed at this site.

REQUIREMENTS FOR ROUTINE INSPECTION AND MAINTENANCE OF STORMWATER BMPS

The Owner / Operator shall keep Maintenance Log Sheets of scheduled tasks as outlined in the Stormwater Management System Operation and Maintenance Plan.

Spill Prevention and Response Plans

The risk of significant spills requiring action at this site is limited and will most likely be associated with motor vehicle use or maintenance. A Spill Prevention, Control, and Countermeasure (SPCC) Plan for the site covering all potential pollution sources form the sales and maintenance of large trucks. All personnel working with potentially hazardous materials shall be educated on the requirements of the site SPCC Plan In the event of a significant spill contact:

Massachusetts Department of Environmental Protection 24-hour emergency response notification line - (888) 304-1133

Provisions for Maintenance of Lawns, Gardens, and other Landscaped Areas

The use of chemical fertilizers is to be limited to the maximum extent practicable. If chemical fertilizers are to be used, they must be worked into the soil to prevent washouts and stormwater contamination of fertilizers.

Requirements for Storage and Use of Fertilizers, Herbicides, and Pesticides

If fertilizers, herbicides, and pesticides are to be used and stored on site they are to be stored in their original containers and keep in a dry, safe area where children do not have access to.

Provisions Solid Waste Management

Solid waste management systems shall be inspected and maintained in accordance with state, local, and federal solid waste management regulations.

Emergency and Regulatory Contacts

Worcester Fire Department:	$911 /(508) 799-3473$
Worcester Police Department:	$911 /(508) 799-8466$
Massachusetts Department of Environmental	
Protection - Southeast Regional Office:	(508) 946-2700
United State Environmental Protection Agency:	(617) 918-1111

CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION \& SEDIMENT CONTROL PLAN
FOR
Single-Family Attached Development
61 Progressive Street
Worcester, Massachusetts

April 30, 2024

Prepared By:
Level Design Group, L.L.C.
249 South Street, Unit 1
Plainville, MA 02762

Prepared For:
Goldstar Builders, Inc.
6 Jacques Street
Worcester, MA 01603

LDG Project No.:
2109.00

TABLE OF CONTENTS

INTRODUCTION

SECTION 1 - SITE AND ACTIVITY DESCRIPTION

1.1 Project Site Operator
1.2 Site \& Project Description
1.3 Construction Sequencing
1.4 Estimated Disturbance
1.5 Approved State or Local Plans

SECTION 2 - CONTROLS TO REDUCE POLLUTANTS

2.1 Pollution Control \& Stabilization Measures
2.2 Construction Records
2.3 Structural Practices
2.4 Storm Water Management
2.5 Discharge of Solid Materials
2.6 Sediment Tracking and Dust Control
2.7 Construction Waste Storage
2.8 Pollutant Sources from Non-Construction Areas

SECTION 3 - MAINTENANCE OF CONTROLS

3.1 Standard Maintenance
3.2 Modifications or Additional BMPs

SECTION 4 - INSPECTIONS
SECTION 5 - NON-STORM WATER DISCHARGES
APPENDICES

Appendix A - Note Pages for Project Documentation

INTRODUCTION

This Construction Period Pollution Prevention and Erosion \& Sediment Control Plan (CPPPESCP) is prepared in accordance Massachusetts Department of Environmental Protection (MADEP) Stormwater Guidelines. The construction activities include development of a 3-unit single family attached dwelling. Construction activities associated with the proposed building include the site grading, utilities and storm water management system. This CPPPESCP must be retained on-site during construction and available for the viewing of permitting authorities as appropriate during construction, as specified in the CPPPESCP.

The total area to be disturbed for overall site development includes approximately $10,000 \pm$ sf., including the new building, driveways, drainage, utilities, landscaping and associated grading.

SECTION 1 - SITE \& ACTIVITY DESCRIPTION

1.1 PROJECT SITE OPERATOR

Gold Star Builders, Inc.

1.2 SITE AND PROJECT DESCRIPTION

PRE-DEVELOPMENT CONDITIONS

The existing site is located at MBL34-12-30 located at 61 Progressive Street, Worcester, MA. The site contains approximately $10,000 \pm$ sf. and is located within a RL-7 Residential Zoning District.

The existing site currently has a single family dwelling and two sheds, with less than 5% grades on site. The site has no structured stormwater management system with all stormwater runoff from the site draining to Progressive Street and flowing into an existing catch basin located to the North of the site in the Progressive Street right-of-way. The site is not within a FEMA Flood Zone and there are no on-site bordering vegetated wetlands.

The on-site soils as classified by the Soil Survey for Worcester County Massachusetts, Northeastern Part are documented as Paxton fine sandy loam (305B) and Udorthents, smoothed (651). A Hydrologic Soil Group C rating was utilized for the pre-and post- and post-development hydrologic analysis. The Soil Survey Map is attached herein.

POST-DEVELOPMENT CONDITIONS

The Applicant proposes to develop the site and construct a three (3) unit single-family attached dwelling. Development activities will include clearing and grubbing of the entire site, construction of the proposed 3-unit structure and associated driveways, and installation of on-site utilities with water and sewer to be connected to existing City mains.

A new fully compliant stormwater management system has been designed to mitigate the impacts of the proposed site development. Runoff from the building rooftops will be directed to on-site BMPs which will include a subsurface Stormtech 740 Infiltration Chambers dedicated for roof top runoff. The Stormtech system is designed with an overflow which discharges to the surface.

Civil Engineers \& Land Surveyors

1.3 CONSTRUCTION SEQUENCING

1. Install Erosion and Sediment Controls;
2. Remove Existing Pavement and Structures in Designated Areas / Clear and Grub Site;
3. Rough grade site;
4. Install stormwater management system within outdoor storage area;
5. Place binder coat pavement and bring drainage system online;
6. Construct Building Foundation;
7. Place binder coat pavement and bring second drainage system online;
8. Fine grade site and loam and seed all disturbed areas;
9. Install Landscaping;
10. Place top coat pavement;
11. Project close out.

1.4 ESTIMATED DISTURBANCE

The total area expected to be disturbed by excavation, grading, or other construction activities is approximately $10,000 \pm$ sf. The area includes required for excavation, building construction, utility installation, and site grading for the new parking areas and driveways.

1.5 APPROVED STATE OR LOCAL PLANS

The project requires Approval from the City of Worcester Zoning Board and Conservation Commission. This CPPPESCP will be modified accordingly once all approvals are obtained.

Civil Engineers \& Land Surveyors

SECTION 2 - CONTROLS TO REDUCE POLLUTANTS

2.1 POLLUTION CONTROL \& STABILIZATION MEASURES

The area which will be disturbed during construction activities will hereafter be referred to as the 'Site'. Areas where no earthwork is proposed shall be protected from disturbance with construction fencing, or other physical demarcation in the field to prevent unnecessary disturbance. Once Site earthwork begins, it should progress without delay until disturbed areas are stabilized. Soil shall be stockpiled outside of the resource areas and their associated buffer zone and be surrounded by staked or ballasted hay bales. If the stockpile will not be disturbed for 30 days or more, temporary seeding shall be spread over it within 7 days of the last disturbance.

The scope of the proposed project renders permanent stabilization more practical than temporary measures. Disturbed areas not proposed to be paved or occupied by the building shall be loamed and seeded upon completion of the subgrade and any utility excavation. Diversion swales shall be installed around the perimeter of the site to collect stormwater runoff during construction. The swales are to be constructed during the "rough grading" phase of the site work. The diversion swales are to be constructed in a manner where they do not intercept ground water and shall discharge to the on-site settling dewatering basin.

Completion of sub-grade driveway shall be followed immediately by the placement of the pavement binder course (finished paving may be delayed to prevent damage during other activities). Stabilization must be in place within 14 days of a temporary or permanent stop of construction activity, unless precluded by snow cover or if work is scheduled to restart within 21 days.

2.2 CONSTRUCTION RECORDS

A record of the dates of key site activities shall be kept on the note pages provided in Appendix A of this document. The record shall include the following:

1. Dates when the site is cleared and grubbed.
2. Dates when major grading activities occur.
3. Dates when construction activities temporarily or permanently cease on a portion of the site.
4. Dates when stabilization measures are initiated.

2.3 STRUCTURAL PRACTICES

The erosion control plan shows 9" Silt Soxx along the property lines. The erosion control line is to be inspected by Level Design Group, LLC after installation and prior to site work commencing on site.

2.4 STORM WATER MANAGEMENT

A new fully compliant stormwater management system has been designed to mitigate the impacts of the proposed site development. Runoff from the building rooftops will be directed to an on-site BMP which will include a subsurface Stormtech 740 Infiltration Chambers dedicated for roof top runoff, to mitigate and treat runoff. The Stormtech system is designed to fully infiltrate all storm events, but is fitted with an overflow which discharges to the surface.

2.5 DISCHARGE OF SOLID MATERIALS

A construction dumpster or other suitable receptacle shall be provided on-site for solid waste accumulation to preclude its entry into storm water systems.

Appropriate portable toilets shall be available at the site from the time when construction commences until the end of construction.

2.6 SEDIMENT TRACKING AND DUST CONTROL

Trucks are expected to arrive and leave the site with construction materials. The exit is to be established to control both dust and the tracking of soils onto public ways. After binder coat pavement has been placed all vehicles entering and exiting the site will be required to travel over the stabilized entrance/exit. If sediment accumulation is evident truck will be required to be rinsed off prior to exiting the site. Dust shall be controlled with limited amounts of water; calcium chloride shall not be utilized.

2.7 CONSTRUCTION WASTE STORAGE

A construction dumpster will be available at all times on-site throughout the construction process. If the need to store construction waste arises during construction the Project Site Operator will notify the City of Worcester Building Inspector in writing as to what materials are to be stored and what controls will be put in place to minimize exposure of the materials to storm water.

2.8 POLLUTANT SOURCES FROM NON-CONSTRUCTION AREAS

There are no anticipated pollutant sources from areas other than the proposed construction.

2.9 CONSTRUCTION DEWATERING

If constructed dewatering is required a dewatering stilling basin will be constructed outside of the 100 -buffer zone to any bordering vegetated wetlands. The basin shall not be excavated into the groundwater table where it would intercept groundwater.

SECTION 3 - MAINTENANCE OF CONTROLS

3.1 STANDARD MAINTENANCE

The Erosion and Sedimentation Controls, Storm Water Management Controls and Other Controls implemented as part of the work should be expected to require maintenance.

If any of the perimeter controls are displaced from its intended location they shall be replaced and re-set to maintain a continuous barrier. At the completion of the project, all adjacent off-site catch basins shall be inspected for sediment in the sumps, and the sediment shall be removed, if present.

The control of dust will require frequent maintenance efforts to dampen disturbed areas as they are exposed or dry out. The crushed stone blanket to control the tracking of sediment onto the roadway leaving the site form the truck tires is expected to require periodic replacement as the voids become 80\% full.

Portable toilets shall be maintained according to applicable local state and federal regulations, and the recommendations of the service employed for the maintenance.

Loamed and seeded areas may require periodic irrigation depending upon weather conditions during the several weeks after planting. The site shall not be considered stabilized until the seeded areas are well established.

3.2 MODIFICATIONS OR ADDITIONAL BMPs

Any modifications to this CPPPESCP or additional required BMPs that appear to be necessary must be approved by the Design Engineer. Approved changes must be completed prior to the next storm event when practicable. If implementation before the next storm event is impracticable, the event must be recorded in the CPPPESCP and alternative BMPs must be implemented as soon as possible.

SECTION 4 - INSPECTIONS

Bi-weekly inspections, no more than 14 days apart, shall be performed on the pollution prevention controls, and the conditions of the site environs relating to erosion, dust, mud tracking, and materials storage. These inspections shall begin the first week of site construction and continue throughout the project until all areas are permanently stabilized, including seeded areas becoming well established. The EPA, MADEP and other state and local agencies may visit the site and ask to inspect these logs along with this CPPPESCP. Inspections are also required within 24 hours of a major storm event, producing a total rainfall greater than 0.5 inches. All inspection must be followed by a report made on the pages bound in Appendix A. This report is to be kept on the site.

Inspections are to be made by qualified personnel. All site inspections will be performed by Level Design Group, L.L.C. personnel, whom prepared this CPPPESCP, and were responsible for the design and permitting of the project.

Inspections shall include all of the specified Erosion and Sedimentation Controls, Storm Water Management Controls and Other Controls. The report shall describe the scope of the inspection, the name and qualifications of the person making the inspection and the date of the inspection. Notes shall be taken describing the condition of disturbed areas and areas recently stabilized to assess the adequacy of the controls and/or the success of the permanent stabilization measures. Comments shall be entered regarding any major rainfall events and the success or problems with the control measures. Records of repairs or improvements shall also be made.

Any problems identified during the inspection shall be rectified by maintaining or repairing the controls specified in this CPPPESCP. If the controls are in good repair, but failing to effectively control pollution, this CPPPESCP must be revised within seven days of an unsatisfactory inspection, and noted in the inspection report.

SECTION 5 - NON-STORM WATER DISCHARGES

This CPPPESCP does not provide for the discharge of any flows other than storm water, with the exception of firefighting water, which is excluded from the regulations.

The proponent and contractor shall develop a spill management plan for and hazardous materials that may be stored on-site or employed during work in or around the buffer adjacent to the wetlands. Specifically, the proponent should be prepared to effectively deal with spillage of fuel or hydraulic fluids from equipment. A quick-absorbent material, such as Speedy Dry® or equivalent, will be stored in a dry readily available area, and used in the event petroleum-based fluids are spilled or leaked. The spent material is then to be containerized and disposed of properly. An emergency fuel boom or absorbent pads shall be readily available in case any such spill threatens the wetlands or surrounding waterways

No storage of hazardous materials shall take place within 50 -feet of any installed and active drainage structure. If such storage takes place on a temporary basis, oil and sediment rolls shall be placed around such structure to prevent the movement of such materials into the structure. Civil Engineers \& Land Surveyors

HydroCAD Analysis - Existing Conditions
 2, 10, 25, \& 100-Year Storms

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 7201$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 10: Pre-1

Link DP-1: Progressive Street

Runoff Area $=10,000$ sf 15.44% Impervious Runoff Depth=1.79" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=78$ Runoff=$=0.48 \mathrm{cfs} 0.034$ af Inflow $=0.48$ cfs 0.034 af Primary $=0.48$ cfs 0.034 af

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 7201$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 10: Pre-1

Link DP-1: Progressive Street

Runoff Area $=10,000$ sf 15.44% Impervious Runoff Depth=3.63"
$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=78$ Runoff=$=0.98 \mathrm{cfs} 0.069$ af
Inflow=0.98 cfs 0.069 af Primary $=0.98$ cfs 0.069 af

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 7201$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 10: Pre-1

Link DP-1: Progressive Street

Runoff Area $=10,000$ sf 15.44% Impervious Runoff Depth=5.21"
$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=78$ Runoff=$=1.39 \mathrm{cfs} 0.100$ af
Inflow=1.39 cfs 0.100 af Primary $=1.39$ cfs 0.100 af

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 7201$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 10: Pre-1

Link DP-1: Progressive Street

Runoff Area $=10,000$ sf 15.44% Impervious Runoff Depth=7.93"
$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=78$ Runoff=$=2.08 \mathrm{cfs} 0.152$ af
Inflow=2.08 cfs 0.152 af Primary $=2.08$ cfs 0.152 af

Summary for Subcatchment 10: Pre-1

Runoff $=\quad 2.08$ cfs @ 12.09 hrs, Volume $=\quad 0.152$ af, Depth= 7.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year Rainfall=10.70'

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 7201$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 100: Post-1

Subcatchment 101: Post-2

Pond 102: SC-740

Runoff Area $=2,360$ sf 100.00% Impervious Runoff Depth=3.65"
$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.20 \mathrm{cfs} 0.016$ af
Runoff Area=7,640 sf 11.16% Impervious Runoff Depth=1.72" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=77$ Runoff $=0.35 \mathrm{cfs} 0.025$ af

Peak Elev=565.85' Storage=0.005 af Inflow=0.20 cfs 0.016 af Discarded $=0.02$ cfs 0.016 af Primary $=0.00$ cfs 0.000 af Outflow $=0.02$ cfs 0.016 af

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 7201$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 100: Post-1

Subcatchment 101: Post-2

Pond 102: SC-740

Runoff Area $=2,360$ sf 100.00% Impervious Runoff Depth $=5.82$ "
$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.32 \mathrm{cfs} 0.026$ af
Runoff Area=7,640 sf 11.16% Impervious Runoff Depth=3.53" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=77$ Runoff $=0.73$ cfs 0.052 af

Peak Elev=566.53' Storage=0.010 af Inflow=0.32 cfs 0.026 af Discarded $=0.02$ cfs 0.026 af Primary $=0.00$ cfs 0.000 af Outflow $=0.02$ cfs 0.026 af

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 7201$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 100: Post-1

Subcatchment 101: Post-2

Pond 102: SC-740

Runoff Area $=2,360$ sf 100.00% Impervious Runoff Depth=7.56"
$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=0.41 \mathrm{cfs} 0.034$ af
Runoff Area=7,640 sf 11.16% Impervious Runoff Depth=5.09" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=77$ Runoff=1.04 cfs 0.074 af

Peak Elev=567.22' Storage=0.014 af Inflow=0.41 cfs 0.034 af Discarded $=0.02$ cfs 0.034 af Primary $=0.00$ cfs 0.000 af Outflow=0.02 cfs 0.034 af

Link DP-1: Progressive Street

Inflow=1.04 cfs 0.074 af

Time span $=0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 7201$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 100: Post-1

Subcatchment 101: Post-2

Pond 102: SC-740

Runoff Area $=2,360 \mathrm{sf} \quad 100.00 \%$ Impervious Runoff Depth $=10.46^{\prime \prime}$
$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.57 \mathrm{cfs} 0.047$ af
Runoff Area=7,640 sf 11.16% Impervious Runoff Depth=7.80" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=77$ Runoff=1.57 cfs 0.114 af

Peak Elev=570.04' Storage=0.019 af Inflow=0.57 cfs 0.047 af Discarded $=0.02$ cfs 0.045 af Primary $=0.16$ cfs 0.003 af Outflow $=0.18$ cfs 0.047 af

Link DP-1: Progressive Street

Inflow=1.57 cfs 0.117 af

Summary for Subcatchment 100: Post-1

Runoff $=\quad 0.57$ cfs @ 12.08 hrs, Volume $=\quad 0.047$ af, Depth=10.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-72.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year Rainfall=10.70"

	Area (sf)	CN D	Roofs, HSG C		
	2,360	98 R			
	2,360	100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array} \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0		Direct Entry			
		Summary for Subcatchment 101: Post-2			
Runoff	=	1.57 cfs	cfs @ 12.0	hrs, Volu	me=
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year Rainfall=10.70"					
Area (sf)		CN D	Description		
	$\begin{array}{r} 853 \\ 6,787 \\ \hline \end{array}$	$\begin{array}{ll} \hline 98 & \ln \\ 74 & >7 \\ \hline \end{array}$	Impervious, HSG C $>75 \%$ Grass cover, Good, HSG C		
	$\begin{array}{r} 7,640 \\ 6,787 \\ 853 \end{array}$	$\begin{array}{ll} \hline 77 & V \\ & 8 \\ & 1 \end{array}$	Weighted Average 88.84\% Pervious Area 11.16\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

Summary for Pond 102: SC-740

Inflow Area	$0.054 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth = 10.46" for 100-Year event			
Inflow	0.57 cfs @	12.08 hrs , Volume=	0.047 af	
Outflow	0.18 cfs @	12.53 hrs , Volume=	0.047 af, At	Atten= 68\%, Lag= 26.8 min
Discarded	0.02 cfs @	10.30 hrs , Volume=	0.045 af	
Primary	0.16 cfs @	12.53 hrs , Volume=	0.003 af	

Routing by Dyn-Stor-Ind method, Time Span= $0.00-72.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=570.04' @ 12.53 hrs Surf.Area= 0.010 ac Storage= 0.019 af
Plug-Flow detention time= 261.1 min calculated for 0.047 af (100% of inflow)
Center-of-Mass det. time $=261.1 \mathrm{~min}$ (999.0-737.9)

Volume	Invert	Avail.Storage	Storage Description
\#1A	564.92'	0.011 af	$\begin{aligned} & \text { 13.00'W x 34.10'L } \times 3.50 \text { 'H Field A } \\ & 0.036 \text { af Overall }-0.008 \text { af Embedded }=0.027 \text { af } \times 40.0 \% \text { Voids } \end{aligned}$
\#2A	565.42'	0.008 af	ADS_StormTech SC-740 +Cap 88 Inside \#1 Effective Size $=44.6 \mathrm{~W} \mathrm{~W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$ Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} Overlap 8 Chambers in 2 Rows
		0.019 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
\#1	Discarded	564.92	$\mathbf{2 . 4 1 0}$ in/hr Exfiltration over Surface area	Phase-In= $0.01{ }^{\prime}$
\#2	Primary	570.00^{\prime}	$\mathbf{2 4 . 0 0 "}$ Horiz. Orifice/Grate $\mathrm{C}=0.600$	
			Limited to weir flow at low heads	

Discarded OutFlow Max=0.02 cfs @ 10.30 hrs HW=564.97' (Free Discharge)

Primary OutFlow Max=0.16 cfs @ $12.53 \mathrm{hrs} \mathrm{HW=570.04}$ ' TW=0.00' (Dynamic Tailwater)
L-2=Orifice/Grate (Weir Controls 0.16 cfs @ 0.64 fps)

Summary for Link DP-1: Progressive Street

Inflow Area $=0.230$ ac, 32.13% Impervious, Inflow Depth $=6.10$ " for 100-Year event Inflow $=\quad 1.57$ cfs @ 12.09 hrs , Volume $=\quad 0.117 \mathrm{af}$ Primary $=\quad 1.57 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=0.117 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

[^0]: ${ }^{1} 80 \%$ TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used．

